
International Journal of Theoretical Physics, Vol. 37, No. 11, 1998

Why Kolmogorov Complexity in Physical
Equations?

Vladik Kreinovich1 and Luc LongpreÂ1

Received December 11, 1997

Several researchers, including M. Gell-Mann, argue that the notion of Kolmogorov
complexity developed in algorithmic information theory is useful in physics (i.e.,
in the description of the physical world). Their arguments are rather convincing,
but there seems to be a gap between traditional physical equations and Kolmogorov
complexity: namely, it is not clear how the standard equations of physics can
lead to algorithmic notions underlying Kolmogorov complexity. In this paper,
this ª gapº is bridged: we explain how Kolmogorov complexity naturally appears
in physical equations.

1. INTRODUCTION

1.1. The Notion of Kolmogorov Complexity

The notion of complexity (usually informal) is very useful in physics.

For example, observations that lead to a sequence of all 0’ s describe a very
simple phenomenon, because the resulting sequence can be simply described

as ª all zeros.º The observations that lead to an oscillating sequence 0101. . .01

are slightly more difficult to describe, but still reasonably easy. On the other

hand, if the observations can only be described by a very complicated system

of partial differential equations, then these observations clearly describe a

much more difficult phenomenon.
This notion of complexity was formalized in the 1960s by three research-

ers: G. Chaitin, A. Kolmogorov, and R. Solomonoff. The resulting definition

defines the complexity K(x) of a sequence of symbols x as the length of the

shortest program p that produces the output x. A sequence of symbols is

1 Department of Computer Science, University of Texas at El Paso, El Paso, Texas 79968; e-
mail: {longpre,vladik} @cs.utep.edu.

2791

0020-7748/98/1100-279 1$15.00/0 q 1998 Plenum Publishing Corporation

2792 Kreinovich and LongpreÂ

usually called a word. By a program , we mean a program in a universal
programming language 8 (like C or Pascal or Fortran). Here:

x programming language means that we have an algorithm (called a
compiler) that, given a text in the language 8, makes some algorithm

run on the computer

x universal means that we can, in principle, describe an arbitrary algo-

rithm in this language 8

The value K (x) thus defined is usually called the Kolmogorov complexity
of the word x.

This definition started an interesting area of research that is often called

algorithmic information theory. For a modern survey of this research area,

see, e.g., Li and VitaÂnyi (1997).

1.2. Kolmogorov Complexity Is Useful in Physics

According to its very definition, Kolmogorov complexity describes the

algorithmic complexity of different objects. At first glance, this complexity

is more relevant for computers than for describing the objective physical

world. However, Kolmogorov complexity is very useful in physics as well.

First, Kolmogorov complexity forms the basis for defining the notion
of randomness, the notion that is central to statistical and quantum physics

(e.g., Gell-Mann, 1994; Li and VitaÂnyi, 1997; Kreinovich and LongpreÂ,

1996, 1997a, b). Thus, Kolmogorov complexity is very useful in foundations
of physics.

Second, several researchers, including M. Gell-Mann (1994), argue con-

vincingly that this notion may be useful in working physics as well, as an
important part of equations that describe the evolution of physical systems.

In particular, Gell-Mann shows that Kolmogorov complexity seems to be an

appropriate tool for describing biological systems (and complex systems

in general).

1.3. The Problem with Using Kolmogorov Complexity in
Physical Equations

The main problem with this idea is that there seems to be a wide logical

gap between traditional physical equations and the notions of algorithmic

information theory. Because of this gap, adding Kolmogorov complexity to

physical equations seems very ad hoc.
Let us explain why there is a (perceived) gap. Traditionally, physics

considers systems of differential equations that describe how the state of a

physical system changes with time. If we know the initial state of the system

s (t0) at some initial moment of time t0, then we can use these equations to

Why Kolmogorov Complexity in Physical Equations? 2793

predict the state of the system s (t) at a future moment t. The prediction

algorithm normally consists in solving (ª integratingº) the given system of

differential equations. As a result, we get a relation s (t) 5 E (t0, t, s (t0)),
where E is a computable function of three variables: two real-valued variables

t0 and t, and a (usually multicomponent) variable s (t0) that describes the

initial state of the system. This function describes the evolution (change in

time) of a physical system and is therefore sometimes called an evolution
operator.

As we have already mentioned, Gell-Mann shows that Kolmogorov
complexity is an appropriate tool for describing the current state and evolution

of different biological systems and other complex systems. On the basic

level of evolution equations, Gell-Mann’ s idea is, in effect, to explicitly add

Kolmogorov complexity [e.g., Kolmogorov complexity of the description of

the initial state s (t0)] to the equations so that the next state become algorithmi-

cally dependent on t0, t, s (t0), and also on the Kolmogorov complexity
K (s (t0)) of the (description of) the initial state s (t0).

There is an immediate problem with this idea:

x We have just mentioned that, in traditional physics, the relation E
between the original state s (t0) and the predicted state s (t) is usu-

ally algorithmic .

x However, it is known that Kolmogorov complexity cannot be com-

puted by any algorithm (see, e.g., Li and VitaÂnyi, 1997). Therefore,

if we make the dependence E explicitly dependent on the Kolmogorov

complexity, this dependence E stops being algorithmic.

This nonalgorithmic character of the ª evolution operatorº E is unusual, but
not that problematic , because many equations of modern physics (especially

of modern superstring theories) are so complicated that no general algorithm

is known for solving them, and it is quite possible that no such general

algorithm exists at all. It is therefore quite reasonable to consider nonalgorith-

mic evolution operators E, i.e., to extend the original class of algorithmic
evolution operators to some more general class.

A more serious problem is that physically natural generalizations of the

class of all algorithmic evolution operators do not seem to lead naturally

exactly to Kolmogorov complexity, and thus the emergence of Kolmogorov

complexity does not seem to be well related with physics.

1.4. What We Plan to Do

The main objective of the present paper is to ª bridgeº the above gap,

and to show that Kolmogorov complexity can indeed naturally appear in

physical equations.

2794 Kreinovich and LongpreÂ

2. WHICH NONALGORITHMIC EVOLUTION OPERATORS
ARE NATURAL PHYSICS?

2.1. It Is Quite Possible That Evolution Operators Are
Nonalgorithmic

We have already mentioned that it is possible that some physical equa-
tions lead to nonalgorithmic evolution operators E. A reasonable question is:

which nonalgorithmic evolution operators can naturally appear in physics?

2.2. General Description of Physical Equations

Most physical equations describe an explicit (and thus, algorithmically
checkable) relation between the values of the fields and their derivatives, a

relation that must hold for all possible moments of time and at all possible

points in space. The main problem of solving this equation is to find the

values of these fields and derivatives that satisfy the given system of equations.

2.3. Simplified Case: Finitely Many Space-Time Events

If each equation contained only finitely many conditions, i.e., it must

be true in finitely many moments of time and at finitely many points of

space, then for each candidate solution we would algorithmically check

whether this candidate is indeed a solution or not. This possibility would

lead, in principle, to an algorithm for solving the given equation.
Crudely speaking, in this algorithm, we enumerate all possible candidate

solutions and for each of them check whether this candidate solution is indeed

a solution or not. We stop checking when we find a solution. Of course, this

idea needs some (minor) refinement if we want to actually use it:

x In principle, there is a continuum of possible real numbers; therefore,

there is a continuum of possible fields, etc. This means that we cannot
simply enumerate all possible values of the fields.

x However, we are interested not in the abstract mathematical possibili-

ties, but in the results that can be produced by a computer or at least

described on a sheet of paper. Whatever we can store in the computer

is a sequence of 0’ s and l’ s, i.e., ultimately, a finite sequence of
symbols from a finite alphabet. Whatever we can place on a sheet

of paper is, too, a finite sequence of symbols in a finite alphabet. In

any given finite alphabet, there are only countably many words of

finite length, and therefore we can, effectively, enumerate (and try)

all these words.

Why Kolmogorov Complexity in Physical Equations? 2795

2.4. Real-Life World: Infinitely Many Space-Time Events

In real-life physical problems, each equation means the validity of this

equality in infinitely many moments of time and at infinitely many spatial
points. These infinities do not necessarily mean that each problem is indeed

not algorithmically solvable: it simply means that simply directly trying all

possible options is no longer possible.

x In most problems of practical physics, we have indirect algorithmic

solving methods, i.e., methods which do not use the (impossible)
exhaustive search. In other words, in these problems, we have an

indirect way of checking, in finitely many computational steps,

whether a given system of equations indeed holds for infinitely many
points in space-time.

x On the other hand, starting from GoÈ del’ s theorem, it is known that

there are problems in mathematics (and in numerical mathematics)
in which no indirect algorithm is possible that would replace the

infinite exhaustive search by a finite algorithmic procedure. So far,

such problems have not yet been found in physics, but, as we have

already mentioned, there is a strong evidence that such problems

may occur in physics as well.

How can we describe the resulting possible nonalgorithmic evolution

operators?

2.5. Toward Mathematical Formulation of Physical Nonalgorithmic
Evolution Operators

We have already assumed that for every possible candidate solution x
and for every possible point m in space-time, checking whether the candidate

m satisfies the given system of equations at this point in space-time is

algorithmically checkable. Let us denote this algorithmically checkable prop-

erty by P (x, m). Therefore, to check whether a candidate x is a solution to

the given system of equations, we must check whether this property P (x, m)
is satisfied for all possible points in space-time, i.e., whether the formula

" m P(x, m) is true or not.

Thus, if we have an algorithmically noncomputable evolution operator,

we can ª computeº its result if we can detect whether such formulas " m P(x, m),

with algorithmically checkable properties P are true or not.

To finalize this description, we must describe the set of possible values
for the variable m (which describes different points in space-time). In princi-

ple, there are continuum many possible points m in space-time. However,

similarly to the above argument about the world with finitely many space-

time points, we can argue that we are only interested in the space-time points

2796 Kreinovich and LongpreÂ

that are representable in a computer or at least describable on a sheet of

paper. Each such point in space-time can be described by a finite sequence

of symbols (even a sequence of 0’ s and 1’ s), and therefore we can in principle
enumerate all of them. Thus, we can assume that the variable m runs over

all possible sequences of 0’ s and 1’ s.

From the mathematical viewpoint, it does not really matter how we

describe these sequences, but from the computer viewpoint, the most useful

representation is to interpret each sequence as a nonnegative integer, i.e., as

a natural number.
Thus, if we have a noncomputable evolution operator, we can ª computeº

it if, for every algorithmically checkable predicate Q (m), we can check

whether " m Q(m) is true or not, where m runs over all possible natural

numbers.

Thus, we can describe physically meaningful noncomputable functions

as follows: they are ª computableº by an algorithm that, in addition to normal
computer operations, can also ask, for any given algorithmically checkable

predicate Q (m), whether the formula " m Q(m) is true or not. In theory of

computation, such ª computingº is called computing with an oracle (see, e.g.,

Papadimitriou, 1994). In these terms, we are interested in functions that are

computable with an oracle that, for a given algorithmically checkable predi-
cate Q(m), checks whether the formula " m Q(m) is true or not.

2.6. What We Plan to Show

In the following text, we will show that, surprisingly, this class of

noncomputable functions coincides with the class of functions that are com-
putable with respect to Kolmogorov complexity.

This result bridges the above-mentioned gap by explaining why Kolmo-

gorov complexity naturally appears in physical equations.

3. MAIN RESULT

Comment. In this section, all the variables run over sequences of 0 and
1, or, equivalently, over natural numbers. Correspondingly, by a function we

mean a function from natural numbers to natural numbers, or, equivalently,

a function from finite sequences of 0’ s and 1’ s to similar finite sequences.

Definition 1. We say that a function is physically computable if it can be

computed with an oracle that, for a given algorithmically checkable predicate
Q (m), checks whether the formula " m Q(m) is true or not.

Definition 2. We say that a function is computable relative to Kolmogorov
complexity if for some universal programming language 8, this function is

Why Kolmogorov Complexity in Physical Equations? 2797

computable with an oracle that, given a word x, returns the Kolmogorov

complexity K8(x) of this word with respect to this language 8.

Theorem. A function is physically computable if and only if it is comput-

able relative to Kolmogorov complexity.

Physical Comment. Thus, every evolution operator E (t0, t, s (t0)) which

is physically computable can be described as a function that algorithmically

depends on the inputs themselves [i.e., on t0, t, s (t0)] and on the Kolmogorov
complexity of these inputs.

Mathematical Comment. We actually prove a result than is stronger than

our Theorem:

x The Theorem states that if a function f (n) is physically computable,

then there exists a universal programming language 8 such that the

function f (n) can be computed by using the corresponding Kolmo-

gorov complexity K8(x) as an oracle. In this formulation, it is possible

that this language depends on the function f (n).

x We actually prove that we can select the universal programming

language 8 from the very beginning and use this same language for

all physically computable functions f (n).

4. PROOF

4.1. The Structure of the Proof

The proof consists of two parts:

x First, we prove that every function that is computable relative to

Kolmogorov complexity is also physically computable. This is the
easier part of the proof.

x Second, we prove that every function that is physically computable

is also computable relative to Kolmogorov complexity. This is a more

technically complicated part of the proof.

4.2. First Part: Proof That Every Function That Is Computable
Relative to Kolmogorov Complexity Is Also
Physically Computable

To prove this result, it is sufficient to show that Kolmogorov complexity

itself is physically computable, i.e., that Kolmogorov complexity can be

computed with an oracle that, for a given algorithmically checkable predicate

Q (m), checks whether the formula " m Q(m) is true or not.

2798 Kreinovich and LongpreÂ

Indeed, if we have such an oracle, then for every program p, we can

check whether this program halts or not (i.e., whether it continues indefinitely

without returning any answer at all, or whether it eventually stops and pro-
duces some answer). Indeed, for every moment of time t, we can algorithmi-

cally check whether this program p has stopped by this time t or not, by

simply running the program p for this time t. Thus, the property S (t), meaning

that the program stops by time t, is algorithmically checkable. Therefore, the

negation Ø S (t) of this property is also algorithmically checkable. Hence, we

can use our oracle to check whether " t Ø S (t) is true or not, i.e., whether the
program continues indefinitely or stops.

Since we are able to check whether each program halts or not, we can

compute the Kolmogorov complexity of a given word x as follows:

x First, we try all programs p of length 1. For each of these programs,

we check whether this program halts or not. (a) If we conclude that
the program p does not halt, we ignore it. (b) If we conclude that

the program p does halt, we run it until it halts, and compare its

result with x. If one of the results coincides with x, this means that

K (x) 5 1, so we can finish our computations. Otherwise, we conclude

that K (x) . 1.

x Suppose now that we have already checked all programs of length
, l and none of them generates x. Then, we check all the programs

of length l. Again, for each of these programs p, we check whether

this program halts or not. (a) If we conclude that the program p does

not halt, we ignore it. (b) If we conclude that the program p does

halt, we run it until it halts, and compare its result with x. If one of

the results coincides with x, this means that K (x) 5 l, so we can
finish our computations. Otherwise, we conclude that K (x) . l, and

try the next possible length (l : 5 l 1 1).

Since one of the programs definitely computes x [e.g., the program

write(x)], this algorithm will eventually stop and produce the desired value

of the Kolmogorov complexity K (x).

4.3. Second Part: Proof That Every Function That Is Physically
Computable Is Also Computable Relative to
Kolmogorov Complexity

We will start this second part of the proof by designing a universal

language 8 for which this result will be proven to be true.
To construct this language, we will start with an arbitrary universal

language 80 and then do the following two-step transformation.

First, we produce an intermediate language 81 in which all programs

have even length. Programs from this language have one of the two forms

Why Kolmogorov Complexity in Physical Equations? 2799

(a) of the type 00p and 01p, where p is a program from the language 80

whose length is even; or (b) of the type 1p, where p is a program from the

language 80 whose length is odd.
It is clear that this is a universal language because the original language

80 is universal, and everything that can be computed by a program p from

that original language can also be computed by the corresponding program

from the language 81.

The compiler for this intermediate language is easy to write:

x If we get a program, first we check its length. If it is odd, we return

an error message; otherwise, we look at the first character of this

program (i.e., 0 or 1).

x If the first character is 1, we delete this 1, and apply the compiler

for the language 80 to the resulting program.

x If the first character is 0, we delete the first two characters and apply
the compiler for the language 80 to the resulting program.

Finally, based on this intermediate language, we design the language 8
that works as follows:

x If the language 8 inputs a program p of even length, then it (a)

deletes the first two characters from this program p, and (b) applies
81 to the resulting shortened program p8.

x If 8 inputs a program p of odd length, then (a) it deletes the first

character from this program p, (b) it applies 81 to the resulting

shortened program p8, and (c) if the language 81 halts on p8 and

produces a word x, it applies 80 to this word x. If the resulting

computations halt, too, then x is produced as a result.

Again, it is easy to check that this is a universal language.

Let us show that if we have an oracle that computes the Kolmogorov

complexity relative to this universal language, then we can, for every algorith-

mically checkable predicate Q (m), check whether the statement " m Q(m) is

true or not.
Indeed, since Q (m) is algorithmically checkable, we can design the

following algorithm: test the property Q (m) for m 5 0, 1, 2, . . . until you

find the value m for which Q (m) is false. Since the original language 80 is

universal, there is a program q in that language that performs the exact same

algorithm. This program halts if and only if the statement " m Q(m) is false.

Depending on whether the length of this program q is odd or even, either
the program q8 5 00q, or the program q8 5 1q performs the same algorithm

in the language 81.

Let us show that the program q halts if and only if its Kolmogorov

complexity K (q) relative to 8 is odd. Indeed:

2800 Kreinovich and LongpreÂ

x If K (q) is odd, it means that in the language 8, there is a program

p of odd length that produces q. According to the definition of 8,

the only way to have an odd-length program produce anything is
when its output is a program that halts. Thus, the program q halts.

x Conversely, let us show that if the program q halts, then K (q) is

odd. Indeed, suppose that we have an even-length program p in the

language 8 that produces q. By definition of 8, this means that if

we apply the compiler for 81 to the program p8 that is obtained from

p by deleting its first two symbols, we get q. In this case, since q
halts, the program 0p8 also produces the same word q, and the program

0p8 is one symbol shorter than the original program p. Thus, if the

word q describes a halting program, then for every even-length pro-

gram p that generates q, there exists a shorter odd-length program

that generates the same word. Thus, the shortest program of all

programs that generate q is of odd length, i.e., K (q) is odd.

So, if we have an oracle that produces the value of K (x) for every given

x, we can (a) form the program q, (b) compute the Kolmogorov complexity

K (q), and (c) check whether this number K (q) is odd or even.
Thus, we will be able to decide whether the program q halts or not, i.e.,

whether the statement " m Q(m) is false or true.

The second part of the theorem is thus proven, and so is the theorem itself.

Comment. In the second part of the proof, we have shown that if a

function is physically computable, then it is computable with respect to

Kolmogorov complexity defined for some universal computer. From the

physical viewpoint, this results answers our question. However, from the

theory of computation viewpoint, this result raises an interesting open ques-
tion: Is the above implication true for an arbitrary universal language, or

only for some of these languages?

ACKNOWLEDGMENTS

This work was supported in part by NASA under cooperative agreement

NCCW-0089, by NSF under grants DUE-9750858 and EEC-9322370, and

by the Future Aerospace Science and Technology Program (FAST) Center

for Structural Integrity of Aerospace Systems, effort sponsored by the Air
Force Office of Scientific Research, Air Force Materiel Command, USAF,

under grant F49620-95-1-0 518.

The authors are thankful to Murray Gell-Mann, whose inspiring talk led

to this research.

Why Kolmogorov Complexity in Physical Equations? 2801

REFERENCES

Gell-Mann, M. (1994). The Quark and the Jaguar: Adventures in the Simple and the Complex,

Freeman, New York.

Kreinovich, V., and LongpreÂ, L. (1996). Unreasonable effectiveness of symmetry in physic,

International Journal of Theoretical Physics, 35, 1549 ±1555.

Kreinovich, V., and LongpreÂ, L. (1997a). Pure quantum states are fundamental, mixtures

(composite states) are mathematical constructions: An argument using algorithmic informa-

tion theory, International Journal of Theoretical Physics, 36, 167±176.

Kreinovich, V., and LongpreÂ, L. (1997b). Nonstandard (non- s -additive) probabilities in algebraic

quantum field theory, International Journal of Theoretical Physics, 36, 1601 ±1615.

Li, M., and VitaÂnyi, P. M. B. (1997). An Introduction to Kolmogorov Complexity and its

Applications , Springer-Verlag, New York.

Papadimitriou, C. H. (1994). Computational Complexity, Addison-Wesley, San Diego,

California.

